Strong equivalence of logic programs under the infinite-valued semantics
Φόρτωση...
Ημερομηνία
Συγγραφείς
Nomikos, C.
Rondogiannis, P.
Wadge, W. W.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Information Processing Letters
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
We consider the notion of strong equivalence [V. Lifschitz, D. Pearce, A. Valverde, Strongly equivalent logic programs, ACM Transactions on Computational Logic 2 (4) (2001) 526-541] of normal propositional logic programs under the infinite-valued semantics [P. Rondogiannis, W.W. Wadge, Minimum model semantics for logic programs with negation-as-failure, ACM Transactions on Computational Logic 6 (2) (2005) 441-467] (which is a purely model-theoretic semantics that is compatible with the well-founded one). We demonstrate that two such programs are strongly equivalent under the infinite-valued semantics if and only if they are logically equivalent in the corresponding infinite-valued logic. In particular, we show that strong equivalence of normal propositional logic programs is decidable, and more specifically coNP-complete. Our results have a direct implication for the well-founded semantics since, as we demonstrate, if two programs are strongly equivalent under the infinite-valued semantics, then they are also strongly equivalent under the well-founded semantics. (C) 2009 Elsevier B.V. All rights reserved.
Περιγραφή
Λέξεις-κλειδιά
formal semantics, negation in logic programming, strong equivalence
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής