A Global Optimization Approach to Neural Network Training

dc.contributor.authorLagaris, I. E.en
dc.contributor.authorVoglis, Cen
dc.date.accessioned2015-11-24T17:01:19Z
dc.date.available2015-11-24T17:01:19Z
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10907
dc.rightsDefault Licence-
dc.subjectArti?cial neural networks,en
dc.subjectglobal optimization,en
dc.subjectmultistart.en
dc.titleA Global Optimization Approach to Neural Network Trainingen
heal.abstractWe study effective approaches for training arti?cial neural networks (ANN). We argue that local optimization methods by themselves are not suited for that task. In fact we show that global optimization methods are absolutely necessary if the training is required to be robust. This is so because the objective function under consideration possesses a multitude of minima while only a few may correspond to acceptable solutions that generalize well.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.journalNameNeural Parallel and Scientific Computationsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2006-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: