A Global Optimization Approach to Neural Network Training
dc.contributor.author | Lagaris, I. E. | en |
dc.contributor.author | Voglis, C | en |
dc.date.accessioned | 2015-11-24T17:01:19Z | |
dc.date.available | 2015-11-24T17:01:19Z | |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/10907 | |
dc.rights | Default Licence | - |
dc.subject | Arti?cial neural networks, | en |
dc.subject | global optimization, | en |
dc.subject | multistart. | en |
dc.title | A Global Optimization Approach to Neural Network Training | en |
heal.abstract | We study effective approaches for training arti?cial neural networks (ANN). We argue that local optimization methods by themselves are not suited for that task. In fact we show that global optimization methods are absolutely necessary if the training is required to be robust. This is so because the objective function under consideration possesses a multitude of minima while only a few may correspond to acceptable solutions that generalize well. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.journalName | Neural Parallel and Scientific Computations | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2006 | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: