Enhancing stochasticity in reinforcement learning schemes

dc.contributor.authorLikas, Aen
dc.contributor.authorKontoravdis, D.en
dc.contributor.authorStafylopatis, A.en
dc.date.accessioned2015-11-24T17:01:38Z
dc.date.available2015-11-24T17:01:38Z
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10956
dc.rightsDefault Licence-
dc.titleEnhancing stochasticity in reinforcement learning schemesen
heal.abstractThe paper develops reinforcement algorithms for networks of stochastic units which select their output based on a distribution whose dependence on the controllable parameters (weights) of the network is not deterministic. A special case of the proposed schemes concerns those applied to Normal/Bernoulli units, which are binary units with two stochastic levels. Both REINFORCE algorithms as well as algorithms not belonging to the REINFORCE class have been developed. All schemes are designed to exploit the two parameters of a normal distribution in order to explore discrete domains. The ability of the proposed algorithms to perform efficient exploration is tested in a number of optimization problems concerning the maximization of a set of functions defined on binary domains. Particular emphasis has been given on deriving schemes having the property of sustained exploration. Obtained results indicate the superiority of the reinforcement schemes applied to Normal/Bernoulli units over reinforcement schemes applied to single-parameter Bernoulli units.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.journalNameJournal of Intelligent Systemsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate1995-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: