Acoustic scattering in prolate spheroidal geometry via vekua tranformation - Theory and numerical results

dc.contributor.authorGergidis, L. N.en
dc.contributor.authorKourounis, D.en
dc.contributor.authorMavratzas, S.en
dc.contributor.authorCharalambopoulos, A.en
dc.date.accessioned2015-11-24T17:38:58Z
dc.date.available2015-11-24T17:38:58Z
dc.identifier.issn1526-1492-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/14569
dc.rightsDefault Licence-
dc.subjectprolate spheroiden
dc.subjectacoustic scatteringen
dc.subjectvekua transformationen
dc.subjectarbitrary precisionen
dc.subjectl-2 -norm minimizationen
dc.subjectcollocationen
dc.subjectmathematical modelingen
dc.subjectspecial functionsen
dc.subjectscientific computingen
dc.subjectboundary integral-equationsen
dc.subjectpoint generated fielden
dc.subjectelement methoden
dc.titleAcoustic scattering in prolate spheroidal geometry via vekua tranformation - Theory and numerical resultsen
heal.abstractA new complete set of scattering eigensolutions of Helmholtz equation in spheroidal geometry is constructed in this paper. It is based on the extension to exterior boundary value problems of the well known Vekua transformation pair, which connects the kernels of Laplace and Helmholtz operators. The derivation of this set is purely analytic. It avoids the implication of the spheroidal wave functions along with their accompanying numerical deficiencies. Using this novel set of eigensolutions, we solve the acoustic scattering problem from a soft acoustic spheroidal scatterer, by expanding the scattered field in terms of it. Two approaches concerning the determination of the expansion coefficients are extensively studied in terms of their numerical and convergence properties. The first one minimizes the L-2-norm of a suitably constructed error function and the second one relies on collocation techniques. The robustness of these approaches is established via the adoption of arbitrary precision arithmetic.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.secondary<Go to ISI>://000250024800005-
heal.journalNameCmes-Computer Modeling in Engineering & Sciencesen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2007-
heal.publisherTech Science Pressen
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: