The number of spanning trees in K-n-Complements of quasi-threshold graphs

dc.contributor.authorNikolopoulos, S. D.en
dc.contributor.authorPapadopoulos, C.en
dc.date.accessioned2015-11-24T17:21:36Z
dc.date.available2015-11-24T17:21:36Z
dc.identifier.issn0911-0119-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/12485
dc.rightsDefault Licence-
dc.subjectspanning treesen
dc.subjectcomplement spanning-tree matrix theoremen
dc.subjecttreesen
dc.subjectquasi-threshold graphsen
dc.subjectcombinatorial problemsen
dc.subjectnetworksen
dc.titleThe number of spanning trees in K-n-Complements of quasi-threshold graphsen
heal.abstractIn this paper we examine the classes of graphs whose K-n-complements are trees or quasi-threshold graphs and derive formulas for their number of spanning trees; for a subgraph H of K-n, the K-n-complement of H is the graph K-n-H which is obtained from K-n by removing the edges of H. Our proofs are based on the complement spanning-tree matrix theorem, which expresses the number of spanning trees of a graph as a function of the determinant of a matrix that can be easily constructed from the adjacency relation of the graph. Our results generalize previous results and extend the family of graphs of the form K-n-H admitting formulas for the number of their spanning trees.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1007/s00373-004-0568-x-
heal.identifier.secondary<Go to ISI>://000224535500008-
heal.identifier.secondaryhttp://www.springerlink.com/content/4amf1kdbjv6gxp7y/fulltext.pdf-
heal.journalNameGraphs and Combinatoricsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2004-
heal.publisherSpringer Verlag (Germany)en
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: