Cerebrospinal fluid flow in the normal and hydrocephalic human brain
Φόρτωση...
Ημερομηνία
Συγγραφείς
Linninger, A. A.
Xenos, M.
Zhu, D. C.
Somayaji, M. R.
Kondapalli, S.
Penn, R. D.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Institute of Electrical and Electronics Engineers (IEEE)
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Ieee Transactions on Biomedical Engineering
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
Advances in magnetic resonance (MR) imaging techniques enable the accurate measurements of cerebrospinal fluid (CSF) flow in the human brain. In addition, image reconstruction tools facilitate the collection of patient-specific brain geometry data such as the exact dimensions of the ventricular and subarachnoidal spaces (SAS) as well as the computer-aided reconstruction of the CSF-filled spaces. The solution of the conservation of CSF mass and momentum balances over a finite computational mesh obtained from the MR images predict the patients' CSF flow and pressure field. Advanced image reconstruction tools used in conjunction with first principles of fluid mechanics allow an accurate verification of the CSF flow patters for individual patients. This paper presents a detailed analysis of pulsatile CSF flow and pressure dynamics in a normal and hydrocephalic patient. Experimental CSF flow measurements and computational results of flow and pressure fields-in the ventricular system, the SAS and brain parenchyma are presented. The pulsating CSF motion. is explored in normal and pathological conditions of communicating hydrocephalus. This paper predicts small transmantle pressure differences between lateral ventricles and SASs (similar to 10 Pa). The transmantle pressure between ventricles and SAS remains small even in the hydrocephalic patient (similar to 30 Pa), but the ICP pulsatility increases by a factor of four. The computational fluid dynamics (CFD) results of the predicted CSF flow velocities are in good agreement with Cine MRI measurements. Differences between the predicted and observed CSF flow velocities in the prepontine area point towards complex brain-CSF interactions. The paper presents the complete computational model to predict the pulsatile CSF flow in the cranial cavity.
Περιγραφή
Λέξεις-κλειδιά
cerebrospinal fluid, computational fluid dynamics, human brain, hydrocephalus, intracranial pressure, reconstruction tools, normal-pressure hydrocephalus, intracranial-pressure, transmantle pressure, dynamics, motion, model, circulation, shunts
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
<Go to ISI>://000243952100011
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών