Mixture of experts classification using a hierarchical mixture model
Loading...
Date
Authors
Titsias, M. K.
Likas, A.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Type
Type of the conference item
Journal type
peer reviewed
Educational material type
Conference Name
Journal name
Neural Computation
Book name
Book series
Book edition
Alternative title / Subtitle
Description
A three-level hierarchical mixture model for classification is presented that models the following data generation process: (1) the data are generated by a finite number of sources (clusters), and (2) the generation mechanism of each source assumes the existence of individual internal class-labeled sources (subclusters of the external cluster). The model estimates the posterior probability of class membership similar to a mixture of experts classifier. In order to learn the parameters of the model, we have developed a general training approach based on maximum likelihood that results in two efficient training algorithms. Compared to other classification mixture models, the proposed hierarchical model exhibits several advantages and provides improved classification performance as indicated by the experimental results.
Description
Keywords
em algorithm
Subject classification
Citation
Link
Language
en
Publishing department/division
Advisor name
Examining committee
General Description / Additional Comments
Institution and School/Department of submitter
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής