Mixture of experts classification using a hierarchical mixture model

Loading...
Thumbnail Image

Date

Authors

Titsias, M. K.
Likas, A.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Type of the conference item

Journal type

peer reviewed

Educational material type

Conference Name

Journal name

Neural Computation

Book name

Book series

Book edition

Alternative title / Subtitle

Description

A three-level hierarchical mixture model for classification is presented that models the following data generation process: (1) the data are generated by a finite number of sources (clusters), and (2) the generation mechanism of each source assumes the existence of individual internal class-labeled sources (subclusters of the external cluster). The model estimates the posterior probability of class membership similar to a mixture of experts classifier. In order to learn the parameters of the model, we have developed a general training approach based on maximum likelihood that results in two efficient training algorithms. Compared to other classification mixture models, the proposed hierarchical model exhibits several advantages and provides improved classification performance as indicated by the experimental results.

Description

Keywords

em algorithm

Subject classification

Citation

Link

Language

en

Publishing department/division

Advisor name

Examining committee

General Description / Additional Comments

Institution and School/Department of submitter

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής

Table of contents

Sponsor

Bibliographic citation

Name(s) of contributor(s)

Number of Pages

Course details

Endorsement

Review

Supplemented By

Referenced By