Shared kernel models for class conditional density estimation

dc.contributor.authorTitsias, M. K.en
dc.contributor.authorLikas, A. C.en
dc.date.accessioned2015-11-24T17:00:11Z
dc.date.available2015-11-24T17:00:11Z
dc.identifier.issn1045-9227-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10722
dc.rightsDefault Licence-
dc.subjectclassificationen
dc.subjectdensity estimationen
dc.subjectexpectation-maximization (em) algorithmen
dc.subjectmixture modelsen
dc.subjectprobabilistic neural networksen
dc.subjectradial basis function (rbf) networken
dc.subjectem algorithmen
dc.subjectmaximum-likelihooden
dc.titleShared kernel models for class conditional density estimationen
heal.abstractWe present probabilistic models which are suitable for class conditional density estimation and can be regarded as shared kernel models where sharing means that each kernel may contribute to the estimation of the conditional densities of all classes. We first propose a model that constitutes an adaptation of the classical radial basis function (RBF) network (with full sharing of kernels among classes) where the outputs represent class conditional densities. In the opposite direction is the approach of separate mixtures model where the density of each class is estimated using a separate mixture density (no sharing of kernels among classes). We present a general model that allows for the expression of intermediate cases where the degree of kernel sharing can be specified through an extra model parameter. This general model encompasses both above mentioned models as special cases. In all proposed models the training process is treated as a maximum likelihood problem and expectation-maximization (EM) algorithms have been derived for adjusting the model parameters.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.journalNameIeee Transactions on Neural Networksen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2001-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: