A sequential method for discovering probabilistic motifs in proteins

dc.contributor.authorBlekas, K.en
dc.contributor.authorFotiadis, D. I.en
dc.contributor.authorLikas, A.en
dc.date.accessioned2015-11-24T17:00:36Z
dc.date.available2015-11-24T17:00:36Z
dc.identifier.issn0026-1270-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10787
dc.rightsDefault Licence-
dc.subjectmotif discoveryen
dc.subjectmixture of motifsen
dc.subjectem algorithmen
dc.subjectprotein fingerprintsen
dc.subjectmeme algorithmen
dc.titleA sequential method for discovering probabilistic motifs in proteinsen
heal.abstractObjectives: This paper proposes a greedy algorithm for learning a mixture of motifs model through likelihood maximization, in order to discover common substrings, known as motifs, from a given collection of related biosequences. Methods: The approach sequentially adds a new motif component to a mixture model by performing a combined scheme of global and local search for appropriately initializing the component parameters. A hierarchical clustering scheme is also applied initially which leads to the identification of candidate motif models and speeds up the global searching procedure. Results. The performance of the proposed algorithm has been studied in both artificial and real biological datasets. In comparison with the well-known MEME approach, the algorithm is advantageous since it identifies motifs with significant conservation and produces larger protein fingerprints. Conclusion: The proposed greedy algorithm constitutes a promising approach for discovering multiple probabilistic motifs in biological sequences. By using an effective incremental mixture modeling strategy, our technique manages to successfully overcome the limitation of the MEME scheme which erases motif occurrences each time a new motif is discovered.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.journalNameMethods Inf Meden
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2004-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: