Better approximation ratio for the vertex cover problem
dc.contributor.author | Karakostas, G. | en |
dc.date.accessioned | 2015-11-24T17:22:15Z | |
dc.date.available | 2015-11-24T17:22:15Z | |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/12586 | |
dc.rights | Default Licence | - |
dc.title | Better approximation ratio for the vertex cover problem | en |
heal.abstract | We reduce the approximation factor for Vertex Cover to 2-Theta(1/root log n) (instead of the previous 2- Theta(log log n/log n), obtained by Bar Yehuda and Even [3], and by Monien and Speckenmeyer [11]). The improvement of the vanishing factor comes as an application of the recent results of Arora, Rao, and Vazirani [2] that improved the approximation factor of the sparsest cut and balanced cut problems. In particular, we use the existence of two big and well-separated sets of nodes in the solution of the semidefinite relaxation for balanced cut, proven in [2]. We observe that a solution of the semidefinite relaxation for vertex cover, when strengthened with the triangle inequalities, can be transformed into a solution of a balanced cut problem, and therefore the existence of big well-separated sets in the sense of [2] translates into the existence of a big independent set. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.secondary | <Go to ISI>://000230880500084 | - |
heal.journalName | Automata, Languages and Programming, Proceedings | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2005 | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: