Detecting outliers in factor analysis using the forward search algorithm
Φόρτωση...
Ημερομηνία
Συγγραφείς
Mavridis, D.
Moustaki, I.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer-reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Multivariate Behavioral Research
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
In this article we extend and implement the forward search algorithm for identifying atypical subjects/observations in factor analysis models. The forward search has been mainly developed for detecting aberrant observations in regression models (Atkinson, 1994) and in multivariate methods such as cluster and discriminant analysis (Atkinson, Riani, & Cerioli, 2004). Three data sets and a simulation study are used to illustrate the performance of the forward search algorithm in detecting atypical and influential cases in factor analysis models. The first data set has been discussed in the literature for the detection of outliers and influential cases and refers to the grades of students on 5 exams. The second data set is artificially constructed to include a cluster of contaminated observations. The third data set measures car's characteristics and is used to illustrate the performance of the forward search when the wrong model is specified. Finally, a simulation study is conducted to assess various aspects of the forward search algorithm.
Περιγραφή
Λέξεις-κλειδιά
covariance structure-analysis, structural equation models, multivariate location, multiple outliers, robust estimation, influential observations, dispersion matrices, estimators, regression, residuals
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
<Go to ISI>://000259640400005
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Αγωγής. Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης