Linearly implicit methods for a semilinear parabolic system arising in two-phase flows
Φόρτωση...
Ημερομηνία
Συγγραφείς
Akrivis, G.
Papageorgiou, D. T.
Smyrlis, Y. S.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Ima Journal of Numerical Analysis
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
We study the discretization of a nonlinear parabolic system arising in two-phase flows, which in a special case reduces to the Kuramoto-Sivashinsky equation, by linearly implicit methods and, in particular, by implicit-explicit multistep methods. We carry out extensive numerical experiments to investigate the accuracy and efficiency of these algorithms with extremely satisfactory results. These numerical experiments establish the analyticity of the solution and the existence of global attractors (rigorous proofs of such results for this system are not available). Our numerical experiments yield a sharp estimate for the band of analyticity of the solutions as the parameters vary. The accuracy of the schemes enables, in general, the exhaustive numerical study of such systems and the full classification of the inertial manifold. We provide numerical examples of travelling time-periodic attractors as well as quasi-periodic and chaotic attractors.
Περιγραφή
Λέξεις-κλειδιά
semilinear parabolic systems, linearly implicit schemes, implicit-explicit backward differentiation formulae schemes, dissipative infinite-dimensional dynamical systems, kuramoto-sivashinsky equation, kuramoto-sivashinsky equation, partial-differential-equations, inertial manifolds, rigorous numerics, variable-stepsize, multistep methods, dynamic-systems, stability, analyticity, order
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής