A significance-based graph model for clustering web documents

dc.contributor.authorKalogeratos, A.en
dc.contributor.authorLikas, A.en
dc.date.accessioned2015-11-24T17:01:18Z
dc.date.available2015-11-24T17:01:18Z
dc.identifier.issn0302-9743-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10903
dc.rightsDefault Licence-
dc.titleA significance-based graph model for clustering web documentsen
heal.abstractTraditional document clustering techniques rely on single-term analysis, such as the widely used Vector Space Model. However, recent approaches have emerged that are based on Graph Models and provide a more detailed description of document properties. In this work we present a novel Significance-based Graph Model for Web documents that introduces a sophisticated graph weighting method, based on significance evaluation of graph elements. We also define an associated similarity measure based on the maximum common subgraph between the graphs of the corresponding web documents. Experimental results on artificial and real document collections using well-known clustering algorithms indicate the effectiveness of the proposed approach.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.journalNameAdvances in Artificial Intelligence, Proceedingsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2006-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Likas-2006-A Significance-Based Graph Model.pdf
Μέγεθος:
168.85 KB
Μορφότυπο:
Adobe Portable Document Format

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: