A significance-based graph model for clustering web documents
dc.contributor.author | Kalogeratos, A. | en |
dc.contributor.author | Likas, A. | en |
dc.date.accessioned | 2015-11-24T17:01:18Z | |
dc.date.available | 2015-11-24T17:01:18Z | |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/10903 | |
dc.rights | Default Licence | - |
dc.title | A significance-based graph model for clustering web documents | en |
heal.abstract | Traditional document clustering techniques rely on single-term analysis, such as the widely used Vector Space Model. However, recent approaches have emerged that are based on Graph Models and provide a more detailed description of document properties. In this work we present a novel Significance-based Graph Model for Web documents that introduces a sophisticated graph weighting method, based on significance evaluation of graph elements. We also define an associated similarity measure based on the maximum common subgraph between the graphs of the corresponding web documents. Experimental results on artificial and real document collections using well-known clustering algorithms indicate the effectiveness of the proposed approach. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.journalName | Advances in Artificial Intelligence, Proceedings | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2006 | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Πρωτότυπος φάκελος/πακέτο
1 - 1 of 1
Φόρτωση...
- Ονομα:
- Likas-2006-A Significance-Based Graph Model.pdf
- Μέγεθος:
- 168.85 KB
- Μορφότυπο:
- Adobe Portable Document Format
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: