A hybrid neural optimization scheme based on parallel updates
Φόρτωση...
Ημερομηνία
Συγγραφείς
Papageorgiou, G.
Likas, A.
Stafylopatis, A.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
International Journal of Computer Mathematics
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
A synchronous Hopfield-type neural network model containing units with analog input and binary output, which is suitable for parallel implementation, is examined in the context of solving discrete optimization problems. A hybrid parallel update scheme concerning the stochastic input-output behaviour of each unit is presented. This parallel update scheme maintains the solution quality of the Boltzmann Machine optimizer, which is inherently sequential. Experimental results on the Maximum Independent Set problem demonstrate the benefit of using the proposed optimizer in terms of computation time. Excellent speedup has been obtained through parallel implementation on both shared memory and distributed memory architecures.
Περιγραφή
Λέξεις-κλειδιά
optimization, parallel computing, boltzmann machine, cauchy machine, boltzmann machines, networks, models
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής