A hybrid neural optimization scheme based on parallel updates

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Συγγραφείς

Papageorgiou, G.
Likas, A.
Stafylopatis, A.

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

International Journal of Computer Mathematics

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

A synchronous Hopfield-type neural network model containing units with analog input and binary output, which is suitable for parallel implementation, is examined in the context of solving discrete optimization problems. A hybrid parallel update scheme concerning the stochastic input-output behaviour of each unit is presented. This parallel update scheme maintains the solution quality of the Boltzmann Machine optimizer, which is inherently sequential. Experimental results on the Maximum Independent Set problem demonstrate the benefit of using the proposed optimizer in terms of computation time. Excellent speedup has been obtained through parallel implementation on both shared memory and distributed memory architecures.

Περιγραφή

Λέξεις-κλειδιά

optimization, parallel computing, boltzmann machine, cauchy machine, boltzmann machines, networks, models

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced