An oscillation criteria for second order functional equations
dc.contributor.author | Shen, J. H. | en |
dc.contributor.author | Stavroulakis, I. P. | en |
dc.date.accessioned | 2015-11-24T17:21:44Z | |
dc.date.available | 2015-11-24T17:21:44Z | |
dc.identifier.issn | 0252-9602 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/12510 | |
dc.rights | Default Licence | - |
dc.subject | oscillation | en |
dc.subject | nonoscillation | en |
dc.subject | functional equations | en |
dc.subject | difference-equations | en |
dc.subject | delay equations | en |
dc.title | An oscillation criteria for second order functional equations | en |
heal.abstract | This paper is concerned with the oscillation of second order linear functional equations of the form x(g(t)) = p(t)x(t) + Q(t)X(g(2)(t)), Where p, Q, g : [t(0), infinity) --> R+ = [0, infinity) are given real valued functions such that g(t) not equivalent to t, lim(t-->infinity) g(t) = infinity. It is proved here that when 0 less than or equal to m := lim inf(t-->infinity) Q(t)P(g(t)) less than or equal to 1/4 all solutions of this equation oscillate if the condition lim(t-->infinity) sup Q(t)P(g(t)) > (1 + root1 -4m/2)(2) (*) is satisfied. It should be emphasized that the condition (*) can not be improved in some sense. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.secondary | <Go to ISI>://000174929700007 | - |
heal.journalName | Acta Mathematica Scientia | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2002 | - |
heal.publisher | Elsevier | en |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: