A methodology for automated fuzzy model generation

dc.contributor.authorTsipouras, M. G.en
dc.contributor.authorExarchos, T. P.en
dc.contributor.authorFotiadis, D. I.en
dc.date.accessioned2015-11-24T17:33:31Z
dc.date.available2015-11-24T17:33:31Z
dc.identifier.issn0165-0114-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13870
dc.rightsDefault Licence-
dc.subjectdecision treesen
dc.subjectfuzzy modelingen
dc.subjectoptimizationen
dc.subjectweighted fuzzy rulesen
dc.subjectinductive learning-methoden
dc.subjectdecision treesen
dc.subjectclassificationen
dc.subjectframeworken
dc.subjectoptimizationen
dc.subjectaccuracyen
dc.subjectcreationen
dc.subjectsystemsen
dc.subjectrulesen
dc.titleA methodology for automated fuzzy model generationen
heal.abstractIn this paper we propose a generic methodology for the automated generation of fuzzy models. The methodology is realized in three stages. Initially, a crisp model is created and in the second stage it is transformed to a fuzzy one. In the third stage, all parameters entering the fuzzy model are optimized. The proposed methodology is novel and generic since it can integrate alternative techniques in each of its stages. A specific realization of this methodology is implemented, using decision trees for the creation of the crisp model, the sigmoid function, the min-max operators and the maximum defuzzifier, for the transformation of the crisp model into a fuzzy one, and four different optimization strategies, including global and local optimization techniques, as well as. hybrid approaches. The proposed methodology presents several advantages and novelties: the transformation of the crisp model to the respective fuzzy one is straightforward ensuring its full automated nature and it introduces a set of parameters, expressing the importance of each fuzzy rule. The above realization is extensively evaluated using several benchmark data sets front the UCI machine learning repository and the obtained results indicate its high efficiency. (C) 2008 Elsevier B.V. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1016/j.fss.2008.04.004-
heal.identifier.secondary<Go to ISI>://000260713000005-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0165011408002212/1-s2.0-S0165011408002212-main.pdf?_tid=eb4939ad420bc07676e78a4d1e9c9a1d&acdnat=1339758721_bf2a088e25745dba00fa8098db7ba042-
heal.journalNameFuzzy Sets and Systemsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2008-
heal.publisherElsevieren
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: