Training reinforcement neurocontrollers using the polytope algorithm
dc.contributor.author | Likas, A. | en |
dc.contributor.author | Lagaris, I. E. | en |
dc.date.accessioned | 2015-11-24T17:03:08Z | |
dc.date.available | 2015-11-24T17:03:08Z | |
dc.identifier.issn | 1370-4621 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/11134 | |
dc.rights | Default Licence | - |
dc.subject | reinforcement learning | en |
dc.subject | neurocontrol | en |
dc.subject | optimization | en |
dc.subject | polytope algorithm | en |
dc.subject | pole balancing | en |
dc.subject | genetic reinforcement | en |
dc.title | Training reinforcement neurocontrollers using the polytope algorithm | en |
heal.abstract | A new training algorithm is presented for delayed reinforcement learning problems that does not assume the existence of a critic model and employs the polytope optimization algorithm to adjust the weights of the action network so that a simple direct measure of the training performance is maximized. Experimental results from the application of the method to the pole balancing problem indicate improved training performance compared with critic-based and genetic reinforcement approaches. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.journalName | Neural Processing Letters | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 1999 | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: