Training reinforcement neurocontrollers using the polytope algorithm

dc.contributor.authorLikas, A.en
dc.contributor.authorLagaris, I. E.en
dc.date.accessioned2015-11-24T17:03:08Z
dc.date.available2015-11-24T17:03:08Z
dc.identifier.issn1370-4621-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/11134
dc.rightsDefault Licence-
dc.subjectreinforcement learningen
dc.subjectneurocontrolen
dc.subjectoptimizationen
dc.subjectpolytope algorithmen
dc.subjectpole balancingen
dc.subjectgenetic reinforcementen
dc.titleTraining reinforcement neurocontrollers using the polytope algorithmen
heal.abstractA new training algorithm is presented for delayed reinforcement learning problems that does not assume the existence of a critic model and employs the polytope optimization algorithm to adjust the weights of the action network so that a simple direct measure of the training performance is maximized. Experimental results from the application of the method to the pole balancing problem indicate improved training performance compared with critic-based and genetic reinforcement approaches.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.journalNameNeural Processing Lettersen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate1999-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: