A non-parametric framework for estimating threshold limit values
Φόρτωση...
Ημερομηνία
Συγγραφείς
Salanti, G.
Ulm, K.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer-reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
BMC Med Res Methodol
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
BACKGROUND: To estimate a threshold limit value for a compound known to have harmful health effects, an 'elbow' threshold model is usually applied. We are interested on non-parametric flexible alternatives. METHODS: We describe how a step function model fitted by isotonic regression can be used to estimate threshold limit values. This method returns a set of candidate locations, and we discuss two algorithms to select the threshold among them: the reduced isotonic regression and an algorithm considering the closed family of hypotheses. We assess the performance of these two alternative approaches under different scenarios in a simulation study. We illustrate the framework by analysing the data from a study conducted by the German Research Foundation aiming to set a threshold limit value in the exposure to total dust at workplace, as a causal agent for developing chronic bronchitis. RESULTS: In the paper we demonstrate the use and the properties of the proposed methodology along with the results from an application. The method appears to detect the threshold with satisfactory success. However, its performance can be compromised by the low power to reject the constant risk assumption when the true dose-response relationship is weak. CONCLUSION: The estimation of thresholds based on isotonic framework is conceptually simple and sufficiently powerful. Given that in threshold value estimation context there is not a gold standard method, the proposed model provides a useful non-parametric alternative to the standard approaches and can corroborate or challenge their findings.
Περιγραφή
Λέξεις-κλειδιά
Air Pollutants, Occupational/adverse effects/*analysis, Algorithms, Bronchitis, Chronic/etiology, Data Collection, Dust/analysis, Humans, *Likelihood Functions, Logistic Models, Models, Statistical, Regression Analysis, Risk Assessment, *Statistics, Nonparametric, *Threshold Limit Values
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
http://www.ncbi.nlm.nih.gov/pubmed/16274473
http://www.biomedcentral.com/1471-2288/5/36
http://www.biomedcentral.com/1471-2288/5/36
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικής