On complete systems of invariants for small graphs

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Συγγραφείς

Harary, Frank
Nikolopoulos, Stavros D.

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Taylor & Francis

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

International Journal of Computer Mathematics

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

We define a small graph to be one with n ? 6 nodes. The celebrated Graph Isomorphism Problem (GIP) consists in deciding whether or not two given graphs are isomorphic, i.e., whether there is a bijective mapping from the nodes of one graph onto those of the other such that adjacency is preserved. An interesting algorithmic approach to graph isomorphism problem uses the ?code? (sometimes called a complete system of invariants). Following this approach, two graphs are isomorphic if and only if they have the same code. We propose several complete sets of invariants to settle the GIP for small graphs. Note that no complete system of invariants for a graph is known, except for those that are equivalent to the entire adjacency matrix or list of adjacencies.

Περιγραφή

Λέξεις-κλειδιά

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced