Semi-supervised and active learning with the probabilistic RBF classifier
Φόρτωση...
Ημερομηνία
Συγγραφείς
Constantinopoulos, C.
Likas, A.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Neurocomputing
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
The probabilistic RBF network (PRBF) is a special case of the RBF network and constitutes a generalization of the Gaussian mixture model. In this paper we propose a semi-supervised learning method for PRBF, using labeled and unlabeled observations concurrently, that is based on the expectation-maximization (EM) algorithm. Next we utilize this method in order to implement an incremental active learning method. At each iteration of active learning, we apply the semi-supervised method, and then we employ a criterion to select an unlabeled observation and query its label. This criterion identifies points near the decision boundary. In order to assess the effectiveness of our method, we propose an adaptation of the well-known Query by Committee (QBC) algorithm for the active learning of the PBFR, and present experimental comparisons on several data sets that indicate the effectiveness of the proposed method. (C) 2008 Elsevier B.V. All rights reserved.
Περιγραφή
Λέξεις-κλειδιά
probabilistic rbf network, active learning, semi-supervised learning, em algorithm, unlabeled data, mixture model, em algorithm
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής