Neural Splines Exploiting Parallelism for Function Approximation Using Modular Neural Networks

dc.contributor.authorLagaris, I. E.en
dc.contributor.authorTsoulos, I.en
dc.contributor.authorLikas, Aen
dc.date.accessioned2015-11-24T17:01:00Z
dc.date.available2015-11-24T17:01:00Z
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10855
dc.rightsDefault Licence-
dc.titleNeural Splines Exploiting Parallelism for Function Approximation Using Modular Neural Networksen
heal.abstractWe introduce the Neural Spline, that is a mathematical model built by combining a neural network and an associated Obreshkov polynomial. The neural spline has nite support and can be used as the basic element in constructing continuous mod- ular neural-based models. These models are suitable for function approximation in partitioned domains and are also amenable to e cient parallel or distributed im- plementation. Experimental results are presented for test problems in one and two dimensions which illustrate the e ectiveness of the proposed function approximation scheme.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.journalNameNeural Parallel and Scientific Computationsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2005-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: