Probability density estimation using artificial neural networks
dc.contributor.author | Likas, A. | en |
dc.date.accessioned | 2015-11-24T17:00:06Z | |
dc.date.available | 2015-11-24T17:00:06Z | |
dc.identifier.issn | 0010-4655 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/10707 | |
dc.rights | Default Licence | - |
dc.subject | probability density estimation | en |
dc.subject | neural networks | en |
dc.subject | multilayer perceptron | en |
dc.subject | gaussian mixtures | en |
dc.subject | maximum-likelihood | en |
dc.subject | em algorithm | en |
dc.title | Probability density estimation using artificial neural networks | en |
heal.abstract | We present an approach for the estimation of probability density functions (pdf) given a set of observations. It is based on the use of feedforward multilayer neural networks with sigmoid hidden units. The particular characteristic of the method is that the output of the network is not a pdf, therefore, the computation of the network's integral is required. When this integral cannot be performed analytically, one is forced to resort to numerical integration techniques. It turns out that this is quite tricky when coupled with subsequent training procedures. Several modifications of the original approach (Modha and Fainman, 1994) are proposed, most of them related to the numerical treatment of the integral and the employment of a preprocessing phase where the network parameters are initialized using supervised training. Experimental results using several test problems indicate that the proposed method is very effective and in most cases superior to the method of Gaussian mixtures. (C) 2001 Elsevier Science B.V. All rights reserved. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.journalName | Computer Physics Communications | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2001 | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: