Einstein-Weyl space-times with geodesic and shear-free neutrino rays: Asymptotic behaviour
dc.contributor.author | Kolassis, Charalampos A. | en |
dc.contributor.author | Santos, Nilton O. | en |
dc.date.accessioned | 2015-11-24T18:29:28Z | |
dc.date.available | 2015-11-24T18:29:28Z | |
dc.identifier.issn | 0003-4916 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/16264 | |
dc.rights | Default Licence | - |
dc.title | Einstein-Weyl space-times with geodesic and shear-free neutrino rays: Asymptotic behaviour | en |
heal.abstract | We consider a neutrino field with goodesic and shear-free rays, in interaction with a gravitational field according to the Einstein-Weyl field equations. Furthermore we suppose that there exists a Killing vector rμ whose magnitude is almost everywhere bounded at the future and past endpoints of the neutrino rays. The implications of the asymptotic behavior of rμ on the structure of space-time are investigated and a useful set of reduced equations is obtained. It is found that under these hypothesis the space-time cannot be asymptotically flat if the neutrino field is nonvanishing. All the Demianski-Kerr-NUT-like space-times as well as the space-times which admit a covariantly constant null vector are explicitly obtained. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.primary | http://dx.doi.org/10.1016/0003-4916(87)90080-7 | - |
heal.identifier.secondary | http://www.sciencedirect.com/science/article/pii/0003491687900807 | - |
heal.journalName | Annals of Physics | en |
heal.journalType | peer reviewed | - |
heal.publicationDate | 1987 | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών και Τεχνολογιών. Τμήμα Βιολογικών Εφαρμογών και Τεχνολογιών | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: