Class conditional density estimation using mixtures with constrained component sharing

dc.contributor.authorTitsias, M. K.en
dc.contributor.authorLikas, A.en
dc.date.accessioned2015-11-24T17:00:32Z
dc.date.available2015-11-24T17:00:32Z
dc.identifier.issn0162-8828-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10776
dc.rightsDefault Licence-
dc.subjectmixture modelsen
dc.subjectclassificationen
dc.subjectdensity estimationen
dc.subjectem algorithmen
dc.subjectcomponent sharingen
dc.subjectem algorithmen
dc.subjectmaximum-likelihooden
dc.titleClass conditional density estimation using mixtures with constrained component sharingen
heal.abstractWe propose a generative mixture model classifier that allows for the class conditional densities to be represented by mixtures having certain subsets of their components shared or common among classes. We argue that, when the total number of mixture components is kept fixed, the most efficient classification model is obtained by appropriately determining the sharing of components among class conditional densities. In order to discover such an efficient model, a training method is derived based on the EM algorithm that automatically adjusts component sharing. We provide experimental results with good classification performance.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.journalNameIeee Transactions on Pattern Analysis and Machine Intelligenceen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2003-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: