Mixture model based Markov random field for discovering patterns in sequences
Φόρτωση...
Ημερομηνία
Συγγραφείς
Blekas, K.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Advances in Artificial Intelligence, Proceedings
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
In this paper a new maximum a posteriori (MAP) approach based on mixtures of multinomials is proposed for discovering probabilistic patterns in sequences. The main advantage of the method is the ability to bypass the problem of overlapping patterns in neighboring positions of sequences by using a Markov random field (MRF) prior. This model consists of two components, the first models the pattern and the second the background. The Expectation-Maximization (EM) algorithm is used to estimate the model parameters and provides closed form updates. Special care is also taken to overcome the known dependence of the EM algorithm to initialization. This is done by applying an adaptive clustering scheme based on the k-means algorithm in order to produce good initial values for the pattern multinomial model. Experiments with artificial sets of sequences show that the proposed approach discovers qualitatively better patterns, in comparison with maximum likelihood (ML) and Gibbs sampling (GS) approaches.
Περιγραφή
Λέξεις-κλειδιά
pattern discovering, markov random field, mixture of multinomials model, expectation-maximization (em) algorithm, multiple, algorithm, alignment
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής