A high-performance face detection system using OpenMP
dc.contributor.author | Hadjidoukas, P. E. | en |
dc.contributor.author | Dimakopoulos, V. V. | en |
dc.contributor.author | Delakis, M. | en |
dc.contributor.author | Garcia, C. | en |
dc.date.accessioned | 2015-11-24T17:02:00Z | |
dc.date.available | 2015-11-24T17:02:00Z | |
dc.identifier.issn | 1532-0626 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/11005 | |
dc.rights | Default Licence | - |
dc.subject | face detection | en |
dc.subject | image processing | en |
dc.subject | nested parallelism | en |
dc.subject | openmp | en |
dc.subject | multi-core computing | en |
dc.title | A high-performance face detection system using OpenMP | en |
heal.abstract | We present the development of a novel high-performance face detection system using a neural network-based classification algorithm and an efficient parallelization with OpenMP. We discuss the design of the system in detail along with experimental assessment. Our parallelization strategy starts with one level of threads and moves to the exploitation of nested parallel regions in order to further improve, by up to 19%, the image-processing capability. The presented system is able to process images in real time (38 images/sec) by sustaining almost linear speedups on a system with a quad-core processor and a particular OpenMP runtime library. Copyright (C) 2009 John Wiley & Sons, Ltd. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.primary | Doi 10.1002/Cpe.1389 | - |
heal.journalName | Concurrency and Computation-Practice & Experience | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2009 | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: