Assessment of the classification capability of prediction and approximation methods for HRV analysis

dc.contributor.authorManis, G.en
dc.contributor.authorNikolopoulos, S.en
dc.contributor.authorAlexandridi, A.en
dc.contributor.authorDavos, C.en
dc.date.accessioned2015-11-24T17:01:33Z
dc.date.available2015-11-24T17:01:33Z
dc.identifier.issn0010-4825-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10941
dc.rightsDefault Licence-
dc.subjectheart rate variabilityen
dc.subjectpredictionen
dc.subjectapproximationen
dc.subjectmean errors cardiogram classificationen
dc.subjectecgen
dc.subjectheart-rate-variabilityen
dc.subjectnonlinear dynamicsen
dc.subjectfailureen
dc.subjectchaosen
dc.subjectmortalityen
dc.subjectperioden
dc.titleAssessment of the classification capability of prediction and approximation methods for HRV analysisen
heal.abstractThe goal of this paper is to examine the classification capabilities of various prediction and approximation methods and suggest which are most likely to be suitable for the clinical setting. Various prediction and approximation methods are applied in order to detect and extract those which provide the better differentiation between control and patient data, as well as members of different age groups. The prediction methods are local linear prediction, local exponential prediction, the delay times method, autoregressive prediction and neural networks. Approximation is computed with local linear approximation, least squares approximation, neural networks and the wavelet transform. These methods are chosen since each has a different physical basis and thus extracts and uses time series information in a different way. (c) 2006 Elsevier Ltd. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1016/j.compbiomed.2006.06.008-
heal.journalNameComput Biol Meden
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2007-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: