High capacity associative memory based on the random Neural Network model

dc.contributor.authorLikas, A.en
dc.contributor.authorStafylopatis, A.en
dc.date.accessioned2015-11-24T17:02:49Z
dc.date.available2015-11-24T17:02:49Z
dc.identifier.issn0218-0014-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/11098
dc.rightsDefault Licence-
dc.subjectneural computationen
dc.subjectassociative memoryen
dc.subjectrandom neural networken
dc.subjecthebbian learningen
dc.subjectspectral learningen
dc.subjectthreshold functionsen
dc.subjectqueuing-networksen
dc.subjectcustomersen
dc.titleHigh capacity associative memory based on the random Neural Network modelen
heal.abstractIn this paper the Bipolar Random Network is described, which constitutes an extension of the Random Neural Network model and exhibits autoassociative memory capabilities. This model is characterized by the existence of positive and negative nodes and symmetrical behavior of positive and negative signals circulating in the network. The network's ability of acting as autoassociative memory is examined and several techniques are developed concerning storage and reconstruction of patterns. These approaches are either based on properties of the network or constitute adaptations of existing neural network techniques. The performance of the network under the proposed schemes has been investigated through experiments showing very good storage and reconstruction capabilities. Moreover, the scheme exhibiting the best behavior seems to outperform other well-known associative neural network models, achieving capacities that exceed 0.5n where n is the size of the network.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.journalNameInternational Journal of Pattern Recognition and Artificial Intelligenceen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate1996-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: