Fluctuating and dissipative dynamics of dark solitons in quasicondensates
Loading...
Date
Authors
Cockburn, S. P.
Nistazakis, H. E.
Horikis, T. P.
Kevrekidis, P. G.
Proukakis, N. P.
Frantzeskakis, D. J.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Type
Type of the conference item
Journal type
peer reviewed
Educational material type
Conference Name
Journal name
Physical Review A
Book name
Book series
Book edition
Alternative title / Subtitle
Description
The fluctuating and dissipative dynamics of matter-wave dark solitons within harmonically trapped, partially condensed Bose gases is studied both numerically and analytically. A study of the stochastic Gross-Pitaevskii equation, which correctly accounts for density and phase fluctuations at finite temperatures, reveals dark-soliton decay times to be lognormally distributed at each temperature, thereby characterizing the previously predicted long-lived soliton trajectories within each ensemble of numerical realizations [ S. P. Cockburn et al., Phys. Rev. Lett. 104, 174101 (2010)]. Expectation values for the average soliton lifetimes extracted from these distributions are found to agree well with both numerical and analytic predictions based upon the dissipative Gross-Pitaevskii model (with the same ab initio damping). Probing the regime for which 0.8 k(B)T < mu < 1.6 k(B)T, we find average soliton lifetimes to scale with temperature as tau similar to T(-4), in agreement with predictions previously made for the low-temperature regime k(B)T << mu. The model is also shown to capture the experimentally relevant decrease in the visibility of an oscillating soliton due to the presence of background fluctuations.
Description
Keywords
bose-einstein condensate, gross-pitaevskii equation, motion, gases, mechanics
Subject classification
Citation
Link
<Go to ISI>://000296284300007
http://pra.aps.org/pdf/PRA/v84/i4/e043640
http://pra.aps.org/pdf/PRA/v84/i4/e043640
Language
en
Publishing department/division
Advisor name
Examining committee
General Description / Additional Comments
Institution and School/Department of submitter
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών