A short and simple solution of the millennium problem about the Navier-Stokes equations and similarly for the Euler equations.

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Συγγραφείς

Konstantinos E. Kyritsis

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

Περιγραφή

Λέξεις-κλειδιά

Incompressible flows, Navier-Stokes equations, Millennium problem, Regularity, Blow-up

Θεματική κατηγορία

MATHEMATICAL PHYSICS

Παραπομπή

Σύνδεσμος

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Abstract In this paper is presented a very short solution to the 4th Millennium problem about the Navier-Stokes equations. The solution proves that there cannot be a blow up in finite or infinite time, and the local in time smooth solutions can be extended for all times, thus regularity. This happily is proved not only for the Navier-Stokes equations but also for the inviscid case of the Euler equations both for the periodic or non-periodic formulation and without external forcing (homogeneous case). The proof is based on an appropriate modified extension in the viscous case of the well-known Helmholtz-Kelvin-Stokes theorem of invariance of the circulation of velocity in the Euler inviscid flows. This is essentially a 1D line density of (rotatory) momentum conservation. We discover a similar 2D surface density of (rotatory) momentum conservation. These conservations are indispensable, besides to the ordinary momentum conservation, to prove that there cannot be a blow-up in finite time, of the point vorticities, thus regularity.

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

University of Iannina, School of Economic and Administrative Sciences, Dept of Accouning-Finance

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Άδεια Creative Commons

Άδεια χρήσης της εγγραφής: CC0 1.0 Universal