Design of a multi-classifier system for discriminating benign from malignant thyroid nodules using routinely H&E-stained cytological images
dc.contributor.author | Daskalakis, A. | en |
dc.contributor.author | Kostopoulos, S. | en |
dc.contributor.author | Spyridonos, P. | en |
dc.contributor.author | Glotsos, D. | en |
dc.contributor.author | Ravazoula, P. | en |
dc.contributor.author | Kardari, M. | en |
dc.contributor.author | Kalatzis, I. | en |
dc.contributor.author | Cavouras, D. | en |
dc.contributor.author | Nikiforidis, G. | en |
dc.date.accessioned | 2015-11-24T19:25:10Z | |
dc.date.available | 2015-11-24T19:25:10Z | |
dc.identifier.issn | 0010-4825 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/22581 | |
dc.rights | Default Licence | - |
dc.subject | Algorithms | en |
dc.subject | Artificial Intelligence | en |
dc.subject | Bayes Theorem | en |
dc.subject | Biopsy, Fine-Needle | en |
dc.subject | Cell Nucleus/metabolism | en |
dc.subject | Cytodiagnosis/methods | en |
dc.subject | Diagnosis, Differential | en |
dc.subject | Eosine Yellowish-(YS)/chemistry | en |
dc.subject | Hematoxylin/chemistry | en |
dc.subject | Humans | en |
dc.subject | Image Interpretation, Computer-Assisted/*methods | en |
dc.subject | Least-Squares Analysis | en |
dc.subject | Neural Networks (Computer) | en |
dc.subject | Sensitivity and Specificity | en |
dc.subject | Staining and Labeling/methods | en |
dc.subject | Statistics, Nonparametric | en |
dc.subject | Thyroid Gland/chemistry/*pathology | en |
dc.subject | Thyroid Neoplasms/metabolism/*pathology | en |
dc.subject | Thyroid Nodule/*diagnosis/metabolism | en |
dc.title | Design of a multi-classifier system for discriminating benign from malignant thyroid nodules using routinely H&E-stained cytological images | en |
heal.abstract | A multi-classifier diagnostic system was designed for distinguishing between benign and malignant thyroid nodules from routinely taken (FNA, H&E-stained) cytological images. To construct the multi-classifier system, several combination rules and different mixtures of ensemble classifier members, employing morphological and textural nuclear features, were comparatively evaluated. Experimental results illustrated that the classifier combination k-NN/PNN/Bayesian and the majority vote rule enhanced significantly classification accuracy (95.7%) as compared to best single classifier (PNN: 89.6%). The proposed system was designed with purpose to be utilized in daily clinical practice as a second opinion tool to support cytopathologists' decisions, when a definite diagnosis is difficult to be obtained. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.identifier.primary | 10.1016/j.compbiomed.2007.09.005 | - |
heal.identifier.secondary | http://www.ncbi.nlm.nih.gov/pubmed/17996861 | - |
heal.identifier.secondary | http://ac.els-cdn.com/S0010482507001588/1-s2.0-S0010482507001588-main.pdf?_tid=a3abe9c61d6ffff80e59ba71a4a7f0ee&acdnat=1333451294_648de2d212352dbfc4b2549151499e23 | - |
heal.journalName | Comput Biol Med | en |
heal.journalType | peer-reviewed | - |
heal.language | en | - |
heal.publicationDate | 2008 | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικής | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: