A Sparse and Spatially Constrained Generative Regression Model for fMRI Data Analysis

dc.contributor.authorOikonomou, V. P.en
dc.contributor.authorBlekas, K.en
dc.contributor.authorAstrakas, L.en
dc.date.accessioned2015-11-24T17:02:42Z
dc.date.available2015-11-24T17:02:42Z
dc.identifier.issn0018-9294-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/11087
dc.rightsDefault Licence-
dc.subjectexpectation maximization (em) algorithmen
dc.subjectfunctional magnetic resonance imaging (fmri) analysisen
dc.subjectgeneral linear regression model (glm)en
dc.subjectmarkov random field (mrf)en
dc.subjectrelevance vector machine (rvm)en
dc.subjecttime-seriesen
dc.subjectbayesian-inferenceen
dc.subjectlinear-modelen
dc.subjectpriorsen
dc.subjectalgorithmen
dc.subjectdesignen
dc.subjectimagesen
dc.subjectbrainen
dc.titleA Sparse and Spatially Constrained Generative Regression Model for fMRI Data Analysisen
heal.abstractIn this study, we present an advanced Bayesian framework for the analysis of functional magnetic resonance imaging (fMRI) data that simultaneously employs both spatial and sparse properties. The basic building block of our method is the general linear regression model that constitutes a well-known probabilistic approach. By treating regression coefficients as random variables, we can apply an enhanced Gibbs distribution function that captures spatial constrains and at the same time allows sparse representation of fMRI time series. The proposed scheme is described as a maximum a posteriori approach, where the known expectation maximization algorithm is applied offering closed-form update equations for the model parameters. We have demonstrated that our method produces improved performance and functional activation detection capabilities in both simulated data and real applications.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1109/Tbme.2010.2104321-
heal.journalNameIeee Transactions on Biomedical Engineeringen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2012-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: