Predicting fraudulent financial statements with machine learning techniques

dc.contributor.authorΚουμανάκος, Ευάγγελοςel
dc.contributor.authorKotsiantis, S.en
dc.contributor.authorTzelepis, D.en
dc.contributor.authorTampakas, V.en
dc.date.accessioned2015-11-24T17:05:43Z
dc.date.available2015-11-24T17:05:43Z
dc.identifier.issn0302-9743-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/11367
dc.rightsDefault Licence-
dc.titlePredicting fraudulent financial statements with machine learning techniquesen
heal.abstractThis paper explores the effectiveness of machine learning techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS. To this end, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms in the recent period 2001-2002. This study indicates that a decision tree can be successfully used in the identification of FFS and underline the importance of financial ratios.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.secondary<Go to ISI>://000238053100061-
heal.journalNameAdvances in Artificial Intelligenceen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2006-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Οικονομικών και Κοινωνικών Επιστημών. Τμήμα Οικονομικών Επιστημώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Koumanakos-2006-Predicting fraudulent financial.pdf
Μέγεθος:
189.77 KB
Μορφότυπο:
Adobe Portable Document Format

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: