Quantifying selective reporting and the Proteus phenomenon for multiple datasets with similar bias

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Συγγραφείς

Pfeiffer, T.
Bertram, L.
Ioannidis, J. P.

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer-reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

PLoS One

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

Meta-analyses play an important role in synthesizing evidence from diverse studies and datasets that address similar questions. A major obstacle for meta-analyses arises from biases in reporting. In particular, it is speculated that findings which do not achieve formal statistical significance are less likely reported than statistically significant findings. Moreover, the patterns of bias can be complex and may also depend on the timing of the research results and their relationship with previously published work. In this paper, we present an approach that is specifically designed to analyze large-scale datasets on published results. Such datasets are currently emerging in diverse research fields, particularly in molecular medicine. We use our approach to investigate a dataset on Alzheimer's disease (AD) that covers 1167 results from case-control studies on 102 genetic markers. We observe that initial studies on a genetic marker tend to be substantially more biased than subsequent replications. The chances for initial, statistically non-significant results to be published are estimated to be about 44% (95% CI, 32% to 63%) relative to statistically significant results, while statistically non-significant replications have almost the same chance to be published as statistically significant replications (84%; 95% CI, 66% to 107%). Early replications tend to be biased against initial findings, an observation previously termed Proteus phenomenon: The chances for non-significant studies going in the same direction as the initial result are estimated to be lower than the chances for non-significant studies opposing the initial result (73%; 95% CI, 55% to 96%). Such dynamic patterns in bias are difficult to capture by conventional methods, where typically simple publication bias is assumed to operate. Our approach captures and corrects for complex dynamic patterns of bias, and thereby helps generating conclusions from published results that are more robust against the presence of different coexisting types of selective reporting.

Περιγραφή

Λέξεις-κλειδιά

Alzheimer Disease/genetics, Databases as Topic/*statistics & numerical data, Humans, *Meta-Analysis as Topic, Publication Bias/*statistics & numerical data, Research Design/*statistics & numerical data

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

http://www.ncbi.nlm.nih.gov/pubmed/21479240
http://www.plosone.org/article/fetchObjectAttachment.action?uri=info%3Adoi%2F10.1371%2Fjournal.pone.0018362&representation=PDF

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικής

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced