Combining magnetic resonance spectroscopy and molecular genomics offers better accuracy in brain tumor typing and prediction of survival than either methodology alone

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

Int J Oncol

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

Recent advents in magnetic resonance spectroscopy (MRS) techniques permit subsequent microarray analysis over the entire human transcriptome in the same tissue biopsies. However, extracting information from such immense quantities of data is limited by difficulties in recognizing and evaluating the relevant patterns of apparent gene expression in the context of the existing knowledge of phenotypes by histopathology. Using a quantitative approach derived from a knowledge base of pathology findings, we present a novel methodology used to process genome-wide transcription and MRS data. This methodology was tested to examine metabolite and genome-wide profiles in MRS and RNA in 55 biopsies from human subjects with brain tumors with similar to 100% certainty. With the guidance of histopathology and clinical outcome, 15 genes with the assistance of 15 MRS metabolites were able to be distinguished by tumor categories and the prediction of survival was better than when either method was used alone. This new method, combining MRS, genomics, statistics and biological content, improves the typing and understanding of the complexity of human brain tumors, and assists in the search for novel tumor biomarkers. It is an important step for novel drug development, it generates testable hypotheses regarding neoplasia and promises to guide human brain tumor therapy provided improved in vivo methods for monitoring response to therapy are developed.

Περιγραφή

Λέξεις-κλειδιά

brain/central nervous system cancers, tumor biomarkers, ex vivo high-resolution magic angle spinning magnetic resonance spectroscopy, support vector machines, genomics, gene-expression data, support vector machines, nervous-system cancers, renal-cell carcinoma, short echo time, h-1 mr spectra, in-vivo, binding-protein, biochemical-characterization, myocardial-infarction

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced