Adding an edge in a cograph
dc.contributor.author | Nikolopoulos, S. D. | en |
dc.contributor.author | Palios, L. | en |
dc.date.accessioned | 2015-11-24T17:01:03Z | |
dc.date.available | 2015-11-24T17:01:03Z | |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/10860 | |
dc.rights | Default Licence | - |
dc.subject | perfect graphs | en |
dc.subject | cographs | en |
dc.subject | cotrees | en |
dc.subject | connected components | en |
dc.subject | co-connected components | en |
dc.subject | optimization problems | en |
dc.subject | recognition algorithm | en |
dc.subject | graphs | en |
dc.title | Adding an edge in a cograph | en |
heal.abstract | In this paper, we establish structural properties of cographs which enable us to present an algorithm which, for a cograph C and a non-edge xy (i.e., two non-adjacent vertices x and y) of G, finds the minimum number of edges that need to be added to the edge set of C such that the resulting graph is a cograph and contains the edge xy. The motivation for this problem comes from algorithms for the dynamic recognition and online maintenance of graphs; the proposed algorithm could be a suitable addition to the algorithm of Shamir and Sharan [13] for the online maintenance of cographs. The proposed algorithm runs in time linear in the size of the input graph and requires linear space. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.journalName | Graph-Theoretic Concepts in Computer Science | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2005 | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: