Bio-inspired intelligence for credit scoring

dc.contributor.authorGoletsis, Y.en
dc.date.accessioned2015-11-24T17:05:04Z
dc.date.available2015-11-24T17:05:04Z
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/11261
dc.rightsDefault Licence-
dc.subjectcredit scoring, biologically inspired algorithms, ant colony optimisation, ACO, artificial immune systems, particle swarm optimisation, PSO, classification, neural networks, ANNs, support vector machines, SVM, decision trees, logit, QDA, credit worthineen
dc.titleBio-inspired intelligence for credit scoringen
heal.abstractThe application of quantitative techniques for the determination of credit worthiness, i.e., the credit scoring, is a major research field for bankers and academics as it can bring about significant savings to finance institutions whilst minimising their exposure to risk. In the current work, the applicability of recent developments in machine learning techniques is examined; specifically biologically inspired techniques mimicking natural ants, bird flocking and immune system cells are applied. Experimental results are presented on three real world credit scoring datasets. Comparative results with commonly used artificial intelligence and statistical classifiers verify the suitability of the newly examined methods.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primary10.1504/IJFMD.2011.038527-
heal.journalNameInternational journal of financial markets and derivativesen
heal.journalTypepeer reviewed-
heal.languageen-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Οικονομικών και Κοινωνικών Επιστημών. Τμήμα Οικονομικών Επιστημώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: