Ψηφιακή επεξεργασία ηλεκτροεγκεφαλογραφήματος (ΗΕΓ) με τη χρήση του λογισμικού OpenViBE
dc.contributor.author | Γιάννη, Άννα - Μαρία | el |
dc.contributor.master | ΜΠΣ: Μηχανικών Η/Υ και Δικτύων | el |
dc.date.accessioned | 2018-10-23T09:46:14Z | |
dc.date.available | 2018-10-23T09:46:14Z | |
dc.date.issued | 2018-10-23 | |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/teiep/9337 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Ηλεκτροεγκεφαλογράφημα | el |
dc.subject | Εγκέφαλος | el |
dc.subject | OpenViBE | el |
dc.subject | WEKA | el |
dc.subject | Λογισμικό | el |
dc.title | Ψηφιακή επεξεργασία ηλεκτροεγκεφαλογραφήματος (ΗΕΓ) με τη χρήση του λογισμικού OpenViBE | el |
heal.abstract | Στην παρούσα διπλωματική αναπτύχθηκε μία μεθοδολογική προσέγγιση για την ανάλυση καταγραφών ηλεκτροεγκεφαλογραφημάτων με χρήση του λογισμικού OpenVibe και την επεξεργασία των σημάτων με το λογισμικό WEKA, με σκοπό την εύρεση του βέλτιστου ταξινομητή των σημάτων. Αρχικά αναλύονται οι λειτουργίες και τα χαρακτηριστικά του εγκεφάλου και του ηλεκτροεγκεφαλογραφήματος και στη συνέχεια παρουσιάζονται βασικές παθήσεις που ανιχνεύονται με τη χρήση των ηλεκτροεγκεφαλογραφημάτων, καθώς επίσης και έξυπνες εφαρμογές που ανιχνεύουν την επιληψία. Στη συνέχεια παρουσιάζονται τα δεδομένα και η υλοποίηση του σεναρίου, καθώς και τα δύο λογισμικά που χρησιμοποιήθηκαν για την επεξεργασία των δεδομένων. Έπειτα ακολουθεί η ερμηνεία των τεσσάρων ταξινομητών που χρησιμοποιήθηκαν. Η διπλωματική εργασία ολοκληρώνεται με την παρουσίαση των αποτελεσμάτων, την αναφορά στον βέλτιστο ταξινομητή των δεδομένων και στη διατύπωση συμπερασμάτων. | el |
heal.abstract | In the present thesis, a methodological approach was developed for the analysis of electroencephalographic (EEG) recordings using OpenViBE software platform and the WEKA software in order to find the optimal signal classifier. Initially, the functions and characteristics of the brain and electroencephalography are analyzed, followed by basic diseases detected by the use of electroencephalographs, as well as smart applications that detect epilepsy. The data and the implementation of the OpenViBE scenario, as well as the two software used to process the data, are presented below. Then follows the interpretation of the four classifiers used. The thesis ends with the presentation of the results, the reference to the optimal data classifier and the conclusions. | el |
heal.academicPublisher | Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Πληροφορικής Τ.Ε, Τομέας Μηχανικών Ηλεκτρονικών Υπολογιστών και Δικτύων | el |
heal.academicPublisherID | teiep | |
heal.access | free | |
heal.advisorName | Τζάλλας, Αλέξανδρος | el |
heal.bibliographicCitation | Γιάννη, Α., 2018. Ψηφιακή επεξεργασία ηλεκτροεγκεφαλογραφήματος (ΗΕΓ) με τη χρήση του λογισμικού OpenViBE. Μεταπτυχιακή εργασία. Άρτα: TEI Ηπείρου. Σχολή Τεχνολογικών εφαρμογών.Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Τομέας Μηχανικών Ηλεκτρονικών Υπολογιστών και Δικτύων | el |
heal.classification | Λογισμικό - OpenViBE | el |
heal.classification | Ανάλυση σήματος | el |
heal.dateAvailable | 2024-01-06T08:24:04Z | |
heal.fullTextAvailability | true | |
heal.generalDescription | Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Τομέας Μηχανικών Ηλεκτρονικών Υπολογιστών και Δικτύων | el |
heal.identifier.secondary | Μεταπτυχιακή εργασία | |
heal.language | el | |
heal.numberOfPages | 106 | |
heal.publicationDate | 2018 | |
heal.recordProvider | Τ.Ε.Ι. Ηπείρου | el |
heal.type | masterThesis |
Αρχεία
Πρωτότυπος φάκελος/πακέτο
1 - 1 of 1
Φόρτωση...
- Ονομα:
- ΜΗΧ.ΠΛΡ. ΜΕΤ 3.pdf
- Μέγεθος:
- 8.09 MB
- Μορφότυπο:
- Adobe Portable Document Format
- Περιγραφή:
- Μεταπτυχιακή εργασία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 3.54 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: