Assessment and prediction of benzene concentrations in a street canyon using artificial neural networks and deterministic models - Their response to "what if" scenarios

dc.contributor.authorKarakitsios, S. P.en
dc.contributor.authorPapaloukas, C. L.en
dc.contributor.authorKassomenos, P. A.en
dc.contributor.authorPilidis, G. A.en
dc.date.accessioned2015-11-24T16:33:41Z
dc.date.available2015-11-24T16:33:41Z
dc.identifier.issn0304-3800-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/7694
dc.rightsDefault Licence-
dc.subjectbenzeneen
dc.subjectmodelingen
dc.subjectartificial neural networksen
dc.subjecttraffic flow patternsen
dc.subjectair-qualityen
dc.subjectcarbon-monoxideen
dc.subjectpollutionen
dc.subjectalgorithmen
dc.subjectmilanen
dc.subjectareaen
dc.subjectno2en
dc.titleAssessment and prediction of benzene concentrations in a street canyon using artificial neural networks and deterministic models - Their response to "what if" scenariosen
heal.abstractThe work deals with the comparison of two models: (i) an artificial neural network (ANN) and (ii) a semi empirical deterministic model (DET), used to simulate benzene concentrations in a street canyon. Furthermore, the response of models to 'what if scenarios' was also examined. The ANN was based on a training procedure using measurements collected in a specific street canyon (benzene concentrations, traffic density, vehicle's type distribution). The DET model was based on road traffic emission rate, wind speed and direction, and the geometrical characteristics of the road. Although both model, produced very good results, given the limited amount of data available, the ANN succeeded slightly better than DET in predicting benzene concentrations. On the other hand, the ANN is less able to reproduce the effect of significant changes in traffic flow patterns on benzene concentrations. The results from the simulations indicate that the ANN is a promising technique for benzene modeling in an urban environment and in can be used for environmental management purposes. (C) 2005 Elsevier B.V. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1016/j.ecolmodel.2005.07.024-
heal.identifier.secondary<Go to ISI>://000236016700005-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0304380005003984/1-s2.0-S0304380005003984-main.pdf?_tid=396042d2cc98548b1b1f5303ad8f050a&acdnat=1335439377_fad4ff2e4504ec23abf7fdecdc1b6d85-
heal.journalNameEcological Modellingen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2006-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών και Τεχνολογιών. Τμήμα Βιολογικών Εφαρμογών και Τεχνολογιώνel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: