Evolutionary operators in global optimization with dynamic search trajectories
Φόρτωση...
Ημερομηνία
Συγγραφείς
Laskari, E. C.
Parsopoulos, K. E.
Vrahatis, M. N.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Numerical Algorithms
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
One of the most commonly encountered approaches for the solution of unconstrained global optimization problems is the application of multi-start algorithms. These algorithms usually combine already computed minimizers and previously selected initial points, to generate new starting points, at which, local search methods are applied to detect new minimizers. Multi-start algorithms are usually terminated once a stochastic criterion is satisfied. In this paper, the operators of the Differential Evolution algorithm are employed to generate the starting points of a global optimization method with dynamic search trajectories. Results for various well-known and widely used test functions are reported, supporting the claim that the proposed approach improves drastically the performance of the algorithm, in terms of the total number of function evaluations required to reach a global minimizer.
Περιγραφή
Λέξεις-κλειδιά
global optimization, dynamic search trajectories, differential evolution, hybrid methods, numerical algorithms, differential evolution, minimization
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής