Correctness proof of a geometric constraint solver
dc.contributor.author | Fudos, I. | en |
dc.contributor.author | Hoffmann, C. M. | en |
dc.date.accessioned | 2015-11-24T17:02:44Z | |
dc.date.available | 2015-11-24T17:02:44Z | |
dc.identifier.issn | 0218-1959 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/11089 | |
dc.rights | Default Licence | - |
dc.subject | geometric constraint solving | en |
dc.subject | computer aided design | en |
dc.subject | systems | en |
dc.title | Correctness proof of a geometric constraint solver | en |
heal.abstract | We present a correctness proof of a graph-directed variational geometric constraint solver. First, we prove that the graph reduction that establishes the sequence in which to apply the construction steps defines a terminating confluent reduction system, in the case of well-constrained graphs. For overconstrained problems there may not be a unique normal form. Underconstrained problems, on the other hand, do have a unique normal form. Second, we prove that all geometric solutions found using simple root-selection rules must place certain triples of elements in the same topological order, no matter which graph reduction sequence they are based on. Moreover, we prove that this implies that the geometric solutions derived by different reduction sequences must be congruent. Again, this result does not apply to overconstrained problems. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.journalName | International Journal of Computational Geometry & Applications | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 1996 | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: