Hierarchical cluster analysis in the European Union based on the beef wholesale carcass price

dc.contributor.authorBlouchos, Georgiosel
dc.date.accessioned2020-06-10T06:56:46Z
dc.date.available2020-06-10T06:56:46Z
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/29888
dc.identifier.urihttp://dx.doi.org/10.26268/heal.uoi.9784
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectHierarchical clusteringen
dc.subjectBeef pricesen
dc.subjectTime seriesen
dc.subjectEuropean Unionen
dc.subjectΙεραρχική συσταδοποίησηel
dc.subjectΤιμές βοδινούel
dc.subjectΧρονοσειρέςel
dc.subjectΕυρωπαϊκή Ένωσηel
dc.titleHierarchical cluster analysis in the European Union based on the beef wholesale carcass priceen
heal.abstractThis study investigates empirically the price situation of the European beef market. Specifically, it utilizes weekly wholesale beef average carcass price data for fifteen European markets and applies the method of hierarchical clustering. In the frame of this application, some of the most fundamental concerns of cluster analysis are presented and discussed thoroughly, while the results of the empirical analysis suggest: First, the DTW distance measure and the choice of the ward linkage method seemed to fit better in the hierarchical agglomerative algorithm concerning our dataset. Second, there is fragmentation and weak connection among the countries of the EU concerning the beef price characteristics. Third, countries playing a major role in the beef market have the highest prices in Europe, while countries less powerful facing lower prices. Fourth, most of the same countries constituting a significant part in the European beef sector face smaller variability concerning their prices. These results relate to the integration and increasing competitiveness which the European Union has set as its goals. However, these are some first indications by simply using hierarchical analysis and further analysis to verify them is necessary.en
heal.academicPublisherΠανεπιστήμιο Ιωαννίνων. Σχολή Οικονομικών και Διοικητικών Επιστημών. Τμήμα Οικονομικών Επιστημώνel
heal.academicPublisherIDuoi
heal.accessfree
heal.advisorNameΣταυρακούδης, Αθανάσιοςel
heal.bibliographicCitationΒιβλιογραφία: σ. 85-87el
heal.classificationHierarchical clustering (Cluster analysis)
heal.committeeMemberNameΣταυρακούδης, Αθανάσιοςel
heal.committeeMemberNameΠαναγιώτου, Δημήτριοςel
heal.committeeMemberNameΜυλωνίδης, Νικόλαοςel
heal.dateAvailable2020-06-10T06:57:47Z
heal.fullTextAvailabilitytrue
heal.languageen
heal.numberOfPages126 σ.
heal.publicationDate2020
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Οικονομικών και Διοικητικών Επιστημών. Τμήμα Οικονομικών Επιστημώνel
heal.typemasterThesis
heal.type.elΜεταπτυχιακή εργασίαel
heal.type.enMaster thesisen

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
Μ.Ε. BLOUCHOS GEORGIOS 2020.pdf
Μέγεθος:
1.8 MB
Μορφότυπο:
Adobe Portable Document Format
Περιγραφή:

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.71 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: