Mixture model analysis of DNA microarray images

dc.contributor.authorBlekas, K.en
dc.contributor.authorGalatsanos, N. P.en
dc.contributor.authorLikas, A.en
dc.contributor.authorLagaris, I. E.en
dc.date.accessioned2015-11-24T17:00:56Z
dc.date.available2015-11-24T17:00:56Z
dc.identifier.issn0278-0062-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10842
dc.rightsDefault Licence-
dc.subjectcross-validated likelihooden
dc.subjectDNA microarray image analysisen
dc.subjectexpectation-maximization algorithmen
dc.subjectgaussian mixture modelsen
dc.subjectmarkov random fieldsen
dc.subjectmaximum a posteriorien
dc.subjectmaximum likelihooden
dc.subjectmicroarray griddingen
dc.subjectem algorithmen
dc.subjectsegmentationen
dc.titleMixture model analysis of DNA microarray imagesen
heal.abstractIn this paper, we propose a new methodology for analysis of microarray images. First, a new gridding algorithm is proposed for determining the individual spots and their borders. Then, a Gaussian mixture model (GMM) approach is presented for the analysis of the individual spot images. The main advantages of the proposed methodology are modeling flexibility and adaptability to the data, which are well-known strengths of GMM. The maximum likelihood and maximum a posteriori approaches are used to estimate the GMM parameters via the expectation maximization algorithm. The proposed approach has the ability to detect and compensate for artifacts that might occur in microarray images. This is accomplished by a model-based criterion that selects the number of the mixture components. We present numerical experiments with artificial and real data where we compare the proposed approach with previous ones and existing software tools for microarray image analysis and demonstrate its advantages.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDoi 10.1109/Tmi.2005.848358-
heal.journalNameIEEE Trans Med Imagingen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2005-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: