Clinical Outcome Prediction by MicroRNAs in Human Cancer: A Systematic Review

Φόρτωση...
Μικρογραφία εικόνας

Ημερομηνία

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Περίληψη

Τύπος

Είδος δημοσίευσης σε συνέδριο

Είδος περιοδικού

peer-reviewed

Είδος εκπαιδευτικού υλικού

Όνομα συνεδρίου

Όνομα περιοδικού

J Natl Cancer Inst

Όνομα βιβλίου

Σειρά βιβλίου

Έκδοση βιβλίου

Συμπληρωματικός/δευτερεύων τίτλος

Περιγραφή

BackgroundMicroRNA (miR) expression may have prognostic value for many types of cancers. However, the miR literature comprises many small studies. We systematically reviewed and synthesized the evidence.MethodsUsing MEDLINE (last update December 2010), we identified English language studies that examined associations between miRs and cancer prognosis using tumor specimens for more than 10 patients during classifier development. We included studies that assessed a major clinical outcome (nodal disease, disease progression, response to therapy, metastasis, recurrence, or overall survival) in an agnostic fashion using either polymerase chain reaction or hybridized oligonucleotide microarrays.ResultsForty-six articles presenting results on 43 studies pertaining to 20 different types of malignancy were eligible for inclusion in this review. The median study size was 65 patients (interquartile range [IQR] = 34-129), the median number of miRs assayed was 328 (IQR = 250-470), and overall survival or recurrence were the most commonly measured outcomes (30 and 19 studies, respectively). External validation was performed in 21 studies, 20 of which reported at least one nominally statistically significant result for a miR classifier. The median hazard ratio for poor outcome in externally validated studies was 2.52 (IQR = 2.26-5.40). For all classifier miRs in studies that evaluated overall survival across diverse malignancies, the miRs most frequently associated with poor outcome after accounting for differences in miR assessment due to platform type were let-7 (decreased expression in patients with cancer) and miR 21 (increased expression).ConclusionsMiR classifiers show promising prognostic associations with major cancer outcomes and specific miRs are consistently identified across diverse studies and platforms. These types of classifiers require careful external validation in large groups of cancer patients that have adequate protection from bias.

Περιγραφή

Λέξεις-κλειδιά

Θεματική κατηγορία

Παραπομπή

Σύνδεσμος

http://www.ncbi.nlm.nih.gov/pubmed/22395642
http://jnci.oxfordjournals.org/content/early/2012/03/06/jnci.djs027.full.pdf

Γλώσσα

en

Εκδίδον τμήμα/τομέας

Όνομα επιβλέποντος

Εξεταστική επιτροπή

Γενική Περιγραφή / Σχόλια

Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος

Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικής

Πίνακας περιεχομένων

Χορηγός

Βιβλιογραφική αναφορά

Ονόματα συντελεστών

Αριθμός σελίδων

Λεπτομέρειες μαθήματος

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced