Design and Analysis of Optimization Algorithms Using Computational Statistics

dc.contributor.authorBartz Beielstein, T.en
dc.contributor.authorParsopoulos, K. E.en
dc.contributor.authorVrahatis, M. N.en
dc.date.accessioned2015-11-24T17:00:35Z
dc.date.available2015-11-24T17:00:35Z
dc.identifier.issn1611-8189-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10786
dc.rightsDefault Licence-
dc.subjectKey worden
dc.titleDesign and Analysis of Optimization Algorithms Using Computational Statisticsen
heal.abstractWe propose a highly flexible sequential methodology for the experimental analysis of optimization algorithms. The proposed technique employs computational statistic methods to investigate the interactions among optimization problems, algorithms, and environments. The workings of the proposed technique are illustrated on the parameterization and comparison of both a population based and a direct search algorithm, on a well known benchmark problem, as well as on a simplified model of a real world problem. Experimental results are reported and conclusions are derived. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primary10.1002/anac.200410007-
heal.journalNameApplied Numerical Analysis & Computational Mathematicsen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2004-
heal.publisherWILEY-VCH Verlagen
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: