The global k-means clustering algorithm
dc.contributor.author | Likas, A. | en |
dc.contributor.author | Vlassis, N. | en |
dc.contributor.author | Verbeek, J. J. | en |
dc.date.accessioned | 2015-11-24T17:00:24Z | |
dc.date.available | 2015-11-24T17:00:24Z | |
dc.identifier.issn | 0031-3203 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/10762 | |
dc.rights | Default Licence | - |
dc.subject | clustering | en |
dc.subject | k-means algorithm | en |
dc.subject | global optimization | en |
dc.subject | k-d trees | en |
dc.subject | data mining | en |
dc.subject | trees | en |
dc.title | The global k-means clustering algorithm | en |
heal.abstract | We present the global k-means algorithm which is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure consisting of N (with N being the size of the data set) executions of the k-means algorithm from suitable initial positions. We also propose modifications of the method to reduce the computational load without significantly affecting solution quality. The proposed clustering methods are tested on well-known data sets and they compare favorably to the k-means algorithm with random restarts. (C) 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved. | en |
heal.access | campus | - |
heal.fullTextAvailability | TRUE | - |
heal.journalName | Pattern Recognition | en |
heal.journalType | peer reviewed | - |
heal.language | en | - |
heal.publicationDate | 2003 | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής | el |
heal.type | journalArticle | - |
heal.type.el | Άρθρο Περιοδικού | el |
heal.type.en | Journal article | en |
Αρχεία
Φάκελος/Πακέτο αδειών
1 - 1 of 1
Φόρτωση...
- Ονομα:
- license.txt
- Μέγεθος:
- 1.74 KB
- Μορφότυπο:
- Item-specific license agreed upon to submission
- Περιγραφή: