Anisotropic feature extraction from endoluminal images for detection of intestinal contractions
Φόρτωση...
Ημερομηνία
Συγγραφείς
Spyridonos, P.
Vilarino, F.
Vitria, J.
Azpiroz, F.
Radeva, P.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer-reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Med Image Comput Comput Assist Interv
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
Wireless endoscopy is a very recent and at the same time unique technique allowing to visualize and study the occurrence of contractions and to analyze the intestine motility. Feature extraction is essential for getting efficient patterns to detect contractions in wireless video endoscopy of small intestine. We propose a novel method based on anisotropic image filtering and efficient statistical classification of contraction features. In particular, we apply the image gradient tensor for mining informative skeletons from the original image and a sequence of descriptors for capturing the characteristic pattern of contractions. Features extracted from the endoluminal images were evaluated in terms of their discriminatory ability in correct classifying images as either belonging to contractions or not. Classification was performed by means of a support vector machine classifier with a radial basis function kernel. Our classification rates gave sensitivity of the order of 90.84% and specificity of the order of 94.43% respectively. These preliminary results highlight the high efficiency of the selected descriptors and support the feasibility of the proposed method in assisting the automatic detection and analysis of contractions.
Περιγραφή
Λέξεις-κλειδιά
Algorithms, Anisotropy, *Artificial Intelligence, Capsule Endoscopy/*methods, Computer Simulation, Gastrointestinal Motility/*physiology, Humans, Image Enhancement/methods, Image Interpretation, Computer-Assisted/*methods, Intestines/*anatomy & histology/*physiology, Models, Biological, Muscle Contraction/physiology, Muscle, Smooth/anatomy & histology/physiology, Pattern Recognition, Automated/*methods, Reproducibility of Results, Sensitivity and Specificity
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
http://www.ncbi.nlm.nih.gov/pubmed/17354768
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικής