Why most discovered true associations are inflated
Φόρτωση...
Ημερομηνία
Συγγραφείς
Ioannidis, J. P.
Τίτλος Εφημερίδας
Περιοδικό ISSN
Τίτλος τόμου
Εκδότης
Περίληψη
Τύπος
Είδος δημοσίευσης σε συνέδριο
Είδος περιοδικού
peer-reviewed
Είδος εκπαιδευτικού υλικού
Όνομα συνεδρίου
Όνομα περιοδικού
Epidemiology
Όνομα βιβλίου
Σειρά βιβλίου
Έκδοση βιβλίου
Συμπληρωματικός/δευτερεύων τίτλος
Περιγραφή
Newly discovered true (non-null) associations often have inflated effects compared with the true effect sizes. I discuss here the main reasons for this inflation. First, theoretical considerations prove that when true discovery is claimed based on crossing a threshold of statistical significance and the discovery study is underpowered, the observed effects are expected to be inflated. This has been demonstrated in various fields ranging from early stopped clinical trials to genome-wide associations. Second, flexible analyses coupled with selective reporting may inflate the published discovered effects. The vibration ratio (the ratio of the largest vs. smallest effect on the same association approached with different analytic choices) can be very large. Third, effects may be inflated at the stage of interpretation due to diverse conflicts of interest. Discovered effects are not always inflated, and under some circumstances may be deflated-for example, in the setting of late discovery of associations in sequentially accumulated overpowered evidence, in some types of misclassification from measurement error, and in conflicts causing reverse biases. Finally, I discuss potential approaches to this problem. These include being cautious about newly discovered effect sizes, considering some rational down-adjustment, using analytical methods that correct for the anticipated inflation, ignoring the magnitude of the effect (if not necessary), conducting large studies in the discovery phase, using strict protocols for analyses, pursuing complete and transparent reporting of all results, placing emphasis on replication, and being fair with interpretation of results.
Περιγραφή
Λέξεις-κλειδιά
*Clinical Trials as Topic, *Data Interpretation, Statistical, Humans, Linkage Disequilibrium, *Models, Statistical, Molecular Epidemiology, *Sensitivity and Specificity
Θεματική κατηγορία
Παραπομπή
Σύνδεσμος
http://www.ncbi.nlm.nih.gov/pubmed/18633328
Γλώσσα
en
Εκδίδον τμήμα/τομέας
Όνομα επιβλέποντος
Εξεταστική επιτροπή
Γενική Περιγραφή / Σχόλια
Ίδρυμα και Σχολή/Τμήμα του υποβάλλοντος
Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικής