Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling

dc.contributor.authorTsipouras, M. G.en
dc.contributor.authorExarchos, T. P.en
dc.contributor.authorFotiadis, D. I.en
dc.contributor.authorKotsia, A. P.en
dc.contributor.authorVakalis, K. V.en
dc.contributor.authorNaka, K. K.en
dc.contributor.authorMichalis, L. K.en
dc.date.accessioned2015-11-24T19:33:51Z
dc.date.available2015-11-24T19:33:51Z
dc.identifier.issn1558-0032-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/23577
dc.rightsDefault Licence-
dc.subject*Artificial Intelligenceen
dc.subjectCoronary Artery Disease/*diagnosisen
dc.subject*Decision Support Systems, Clinicalen
dc.subject*Decision Support Techniquesen
dc.subjectDiagnosis, Computer-Assisted/*methodsen
dc.subject*Fuzzy Logicen
dc.subjectGreeceen
dc.subjectHumansen
dc.subjectInformation Storage and Retrieval/*methodsen
dc.subjectPattern Recognition, Automated/methodsen
dc.subjectReproducibility of Resultsen
dc.subjectSensitivity and Specificityen
dc.titleAutomated diagnosis of coronary artery disease based on data mining and fuzzy modelingen
heal.abstractA fuzzy rule-based decision support system (DSS) is presented for the diagnosis of coronary artery disease (CAD). The system is automatically generated from an initial annotated dataset, using a four stage methodology: 1) induction of a decision tree from the data; 2) extraction of a set of rules from the decision tree, in disjunctive normal form and formulation of a crisp model; 3) transformation of the crisp set of rules into a fuzzy model; and 4) optimization of the parameters of the fuzzy model. The dataset used for the DSS generation and evaluation consists of 199 subjects, each one characterized by 19 features, including demographic and history data, as well as laboratory examinations. Tenfold cross validation is employed, and the average sensitivity and specificity obtained is 62% and 54%, respectively, using the set of rules extracted from the decision tree (first and second stages), while the average sensitivity and specificity increase to 80% and 65%, respectively, when the fuzzification and optimization stages are used. The system offers several advantages since it is automatically generated, it provides CAD diagnosis based on easily and noninvasively acquired features, and is able to provide interpretation for the decisions made.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primary10.1109/TITB.2007.907985-
heal.identifier.secondaryhttp://www.ncbi.nlm.nih.gov/pubmed/18632325-
heal.journalNameIEEE Trans Inf Technol Biomeden
heal.journalTypepeer-reviewed-
heal.languageen-
heal.publicationDate2008-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: