Simultaneous detection of abrupt cuts and dissolves in videos using support vector machines

dc.contributor.authorChasanis, V.en
dc.contributor.authorLikas, A.en
dc.contributor.authorGalatsanos, N.en
dc.date.accessioned2015-11-24T17:01:56Z
dc.date.available2015-11-24T17:01:56Z
dc.identifier.issn0167-8655-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/11001
dc.rightsDefault Licence-
dc.subjectabrupt cut detectionen
dc.subjectdissolve detectionen
dc.subjectsupport vector machinesen
dc.subjectshot-boundary detectionen
dc.titleSimultaneous detection of abrupt cuts and dissolves in videos using support vector machinesen
heal.abstractVideo shot detection is an important contemporary problem since it is the first step towards indexing and content based video retrieval. Traditionally, video shot segmentation approaches rely on thresholding methodologies which are sensitive to the content of the video being processed and do not generalize well the when there is little prior knowledge about the video content. To ameliorate this shortcoming we propose a learning based methodology using a set of features that are specifically designed to capture the differences among hard cuts, gradual transitions and normal sequences of frames at the same time. A support vector machine (SVM) classifier is trained both to locate shot boundaries and characterize transition types. Numerical experiments using a variety of videos demonstrate that our method is capable of accurately discriminating shot transitions in videos with different characteristics.(C) 2008 Elsevier B.V. All rights reserved.en
heal.accesscampus-
heal.fullTextAvailabilityTRUE-
heal.identifier.primaryDOI 10.1016/j.patrec.2008.08.015-
heal.journalNamePattern Recognition Lettersen
heal.journalTypepeer reviewed-
heal.languageen-
heal.publicationDate2009-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.typejournalArticle-
heal.type.elΆρθρο Περιοδικούel
heal.type.enJournal articleen

Αρχεία

Φάκελος/Πακέτο αδειών

Προβολή: 1 - 1 of 1
Φόρτωση...
Μικρογραφία εικόνας
Ονομα:
license.txt
Μέγεθος:
1.74 KB
Μορφότυπο:
Item-specific license agreed upon to submission
Περιγραφή: